Algebraic Properties of Edge Ideals via Combinatorial Topology
نویسندگان
چکیده
We apply some basic notions from combinatorial topology to establish various algebraic properties of edge ideals of graphs and more general Stanley-Reisner rings. In this way we provide new short proofs of some theorems from the literature regarding linearity, Betti numbers, and (sequentially) Cohen-Macaulay properties of edges ideals associated to chordal, complements of chordal, and Ferrers graphs, as well as trees and forests. Our approach unifies (and in many cases strengthens) these results and also provides combinatorial/enumerative interpretations of certain algebraic properties. We apply our setup to obtain new results regarding algebraic properties of edge ideals in the context of local changes to a graph (adding whiskers and ears) as well as bounded vertex degree. These methods also lead to recursive relations among certain generating functions of Betti numbers which we use to establish new formulas for the projective dimension of edge ideals. We use only well-known tools from combinatorial topology along the lines of independence complexes of graphs, (not necessarily pure) vertex decomposability, shellability, etc.
منابع مشابه
Algebraic and topological aspects of quasi-prime ideals
In this paper, we define the new notion of quasi-prime ideal which generalizes at once both prime ideal and primary ideal notions. Then a natural topology on the set of quasi-prime ideals of a ring is introduced which admits the Zariski topology as a subspace topology. The basic properties of the quasi-prime spectrum are studied and several interesting results are obtained. Specially, it is pro...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملSome Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملConcerning Triangulations of Products of Simplices
In this thesis, we undertake a combinatorial study of certain aspects of triangulations of cartesian products of simplices, particularly in relation to their relevance in toric algebra and to their underlying product structure. The first chapter reports joint work with Samu Potka. The object of study is a class of homogeneous toric ideals called cut ideals of graphs, that were introduced by Stu...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009